

How to Evaluate Transformation Based Cancelable Biometric Systems?

R. Belguechi, E. Cherrier and C. Rosenberger

GREYC Research Lab, ENSICAEN - CNRS – University of Caen, FRANCE

NIST International Biometric Performance Testing Conference 2012

Cancelable biometric systems

- Privacy by design biometric systems,
- Two approaches: crypto-biometrics and transformation based,
- Pionner article : RATHA et al., 2001,
- BioHashing, a popular algorithm : ТЕОН et al., 2004,
- Difficult to evaluate their security.

Cancelable biometric systems

- Privacy by design biometric systems,
- Two approaches: crypto-biometrics and transformation based,
- Pionner article : RATHA et al., 2001,
- BioHashing, a popular algorithm: TEOH et al., 2004,
- Difficult to evaluate their security.

Contributions

- \bullet Proposition of evaluation criteria for privacy and security compliance \Rightarrow extension of $\rm NAGAR$ et al., 2010,
- Illustrations on fingerprints and finger knuckle prints,
- Definition of a Matlab toolbox for the evaluation of BioHashing based cancelable systems

- BioHashing algorithm
- 2 Evaluation framework
- 3 Experimental results
- 4 Conclusion & perspectives

- BioHashing algorithm
- 2 Evaluation framework
- 3 Experimental results
- 4 Conclusion & perspectives

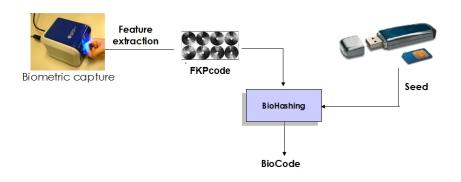
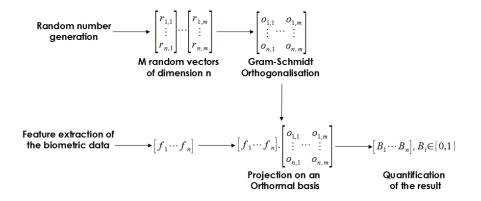



FIGURE 1: General principle of the BioHashing algorithm

BioHashing algorithm

Properties'

- Given the BioCode, the biometric raw data cannot be retrieved,
- Only the BioCode is stored,
- If the BioCode is intercepted, a new one can be generated,
- An individual can have many BioCodes for different applications,
- The BioHashing process improves performances.

Properties

- Given the BioCode, the biometric raw data cannot be retrieved,
- Only the BioCode is stored,
- If the BioCode is intercepted, a new one can be generated,
- An individual can have many BioCodes for different applications,
- The BioHashing process improves performances.

Open questions for an attacker

- Is it possible to generate an admissible BioCode without the seed?
- Can we predict a BioCode given previous realizations?
- How different are two BioCodes generated from the same FKPcode?
 ⇒ Definition of an evaluation framework.

- BioHashing algorithm
- 2 Evaluation framework
 - Overview
 - Notations
 - Efficiency
 - Non-invertibility
 - Diversity
- 3 Experimental results
- 4 Conclusion & perspectives

Security properties

- **Performance**: the template protection shall not deteriorate the performance of the original biometric system,
- Revocability or renewability: it should be possible to revoke a biometric template.
- Non-invertibility or irreversibility: from the transformed data, it should not be possible to obtain enough information on the original biometric data to forge a fake biometric template,
- Diversity or unlinkability: it should be possible to generate different biocodes for multiple applications, and no information should be deduced from their different realizations.
 - \Rightarrow Definition of 8 evaluation criteria based on NAGAR et al., 2010

Verification process

$$R_{z} = 1_{\{D_{T}(f(b_{z}, K_{z}), f(b'_{z}, K_{z})) \le \epsilon_{T}\}}$$
(1)

Where:

- R_z: decision result for the verification of user z using the cancelable system,
- D_T : distance function in the transformed domain,
- f : the feature transformation function,
- ullet b_z , b_z' represent the template and query biometric features of user z,
- K_z : set of transformation parameters,
- \bullet ϵ_T : decision threshold.

A_1 evaluation criterion

$$A_1 = 1 - \frac{\text{AUC(FAR}_{\text{T}}, \text{FRR}_{\text{T}})}{\text{AUC(FAR}_{\text{O}}, \text{FRR}_{\text{O}})}$$
(2)

where:

- AUC : area under the ROC curve,
- FRR_O is the false reject rate and FAR_O is the false accept rate of the original biometric system (without any template protection),
- FRR_T is the false reject rate and FAR_T is the false accept rate of the cancelable biometric system (with template protection).

if $A_1 > 0$, the protection of the template improves the performance.

A_2 to A_5 evaluation criteria

$$FAR_A(\epsilon_T) = P(D_T(f(b_z, K_z), A_z) \le \epsilon_T)$$
(3)

Where:

- $FAR_A(\epsilon_T)$: probability of a successful attack by the impostor for the threshold ϵ_T .
- ullet A_z : generated biocode by the impostor with different methods,
- We can consider $\epsilon_T = \epsilon_{EER_T}$ (ϵ_{EER_T} : threshold to have the EER functionning point of the cancelable biometric system).

• Zero effort attack (A_2) :

An impostor provides one of its biometric sample to be authenticated as the user $z: A_z = f(b_x, K_x)$,

- Zero effort attack (A_2) : An impostor provides one of its biometric sample to be authenticated as the user $z: A_z = f(b_x', K_x)$,
- Brute force attack (A_3) : An impostor tries to be authenticated by trying different random values of $A: A_z = A$,

- Zero effort attack (A_2) :
 - An impostor provides one of its biometric sample to be authenticated as the user $z: A_z = f(b_x', K_x)$,
- Brute force attack (A_3) : An impostor tries to be authenticated by trying different random values of $A: A_z = A$,
- Stolen token attack (A_4) : An impostor has obtained the token K_z of the genuine user z and tries different random values of b to generate : $A_z = f(b, K_z)$,

- Zero effort attack (A_2) : An impostor provides one of its biometric sample to be authenticated as the user $z: A_z = f(b_x', K_x)$,
- Brute force attack (A_3) :
 An impostor tries to be authenticated by trying different random values of $A: A_z = A$,
- Stolen token attack (A₄):
 An impostor has obtained the token K_z of the genuine user z and tries different random values of b to generate: A_z = f(b, K_z),
- Stolen biometric data attack (A_5) : An impostor knows $\acute{b_z}$ and tries different random numbers K to generate : $A_z = f(\acute{b_z}, K)$.

A_6 evaluation criterion

$$A_6 = \frac{1}{N} \sum_{z} \sum_{j=1}^{M} \max(I(f(b_z, K_z), f(b_z^j, K_z)))$$

$$I(X,Y) = \sum_{x} \sum_{y} P(x,y) \log(\frac{P(x,y)}{P(x)P(y)})$$

Where:

- ullet b_z : denotes the reference of the individual z in the database,
- b_z^j : denotes the j^{th} test data of the individual z in the database,
- N: the number of individuals in the database,
- *M* : the number of generated biocodes for each individual,
- P : the estimation of the probability.

A_7 to A_8 evaluation criteria

For each template of the genuine user :

- Generation of Q biocodes $B_z = \{f(b_z, K_z^1), ..., f(b_z, K_z^Q)\}$ for user z,
- Prediction of a possible biocode value by setting the most probable value of each bit given B_z ,
- Computation of equation (2).
 - \Rightarrow A_7 value for Q=3 and A_8 for Q=11

A_7 to A_8 evaluation criteria

For each template of the genuine user :

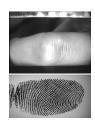
- Generation of Q biocodes $B_z = \{f(b_z, K_z^1), ..., f(b_z, K_z^Q)\}$ for user z,
- Prediction of a possible biocode value by setting the most probable value of each bit given B_z ,
- Computation of equation (2).
 - \Rightarrow A_7 value for Q=3 and A_8 for Q=11

Summary

The security and robustness of a cancelable biometric system are characterized by an eight-dimensional vector $(A_i, i = 1, ..., 8)$

- BioHashing algorithm
- 2 Evaluation framework
- Experimental results
 - Protocol
 - Robustness to attacks
 - Summary
- 4 Conclusion & perspectives

Benchmark databases


- PolyU FKP Database LIN ZHANG, 2009 : 4 fingers of 165 volunteers, each individual has provided 12 images,
- FVC2002 benchmark MAIO et al., 2002 (dB3):
 composed of 8 fingerprints (resolution 355 x 390 pixels) for 100 individuals.

Benchmark databases

- PolyU FKP Database LIN ZHANG, 2009 : 4 fingers of 165 volunteers, each individual has provided 12 images,
- FVC2002 benchmark MAIO et al., 2002 (dB3):
 composed of 8 fingerprints (resolution 355 x 390 pixels) for 100 individuals.

Feature computation

Gabor descriptors

Size: 128 parameters (16 scales, 8 orientations)

Computation: single enrolment, Hamming distance verification

Robustness to attacks : fingerprint case

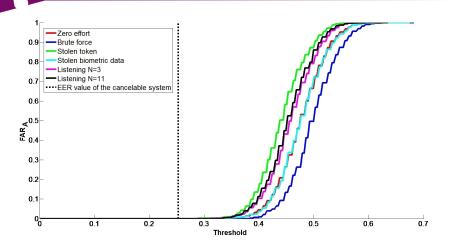


FIGURE 2: Analysis on fingerprints (FVC 2002)

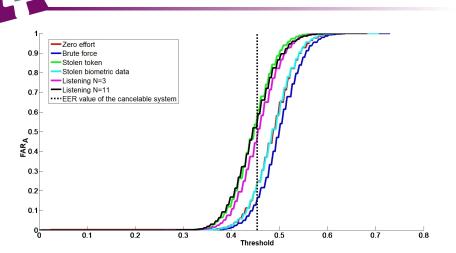


FIGURE 3: Analysis on finger knuckle prints (POLY FKP)

Synthesis

- Evaluation is done on a functionning point,
- The more a priori information the attacker knows, the more the attack is efficient,
- It is possible to compare attacks (same algorithm and biometric data).

Modalities	A_1	A_2	<i>A</i> ₃	A_4	A_5	A_6	A ₇	A ₈
Fingerprint	1.0	0	0	0	0	0.44	0	0
FKP	0.10	0.25	0.15	0.54	0.25	0.58	0.51	0.59

TABLE 1: Evaluation results of the cancelable biometric systems.

- BioHashing algorithm
- 2 Evaluation framework
- 3 Experimental results
- 4 Conclusion & perspectives

Contributions

- Evaluation framework for cancelable biometric systems,
- Simulation of different attacks,
- Illustration on a FKP and fingerprint generic biometric system.

Contributions

- Evaluation framework for cancelable biometric systems,
- Simulation of different attacks,
- Illustration on a FKP and fingerprint generic biometric system.

Perspectives

- More complex attacks
 - ⇒ generation of the biocode based on the listening attack
 - ⇒ impact of the random generator

http://www.epaymentbiometrics.ensicaen.fr/